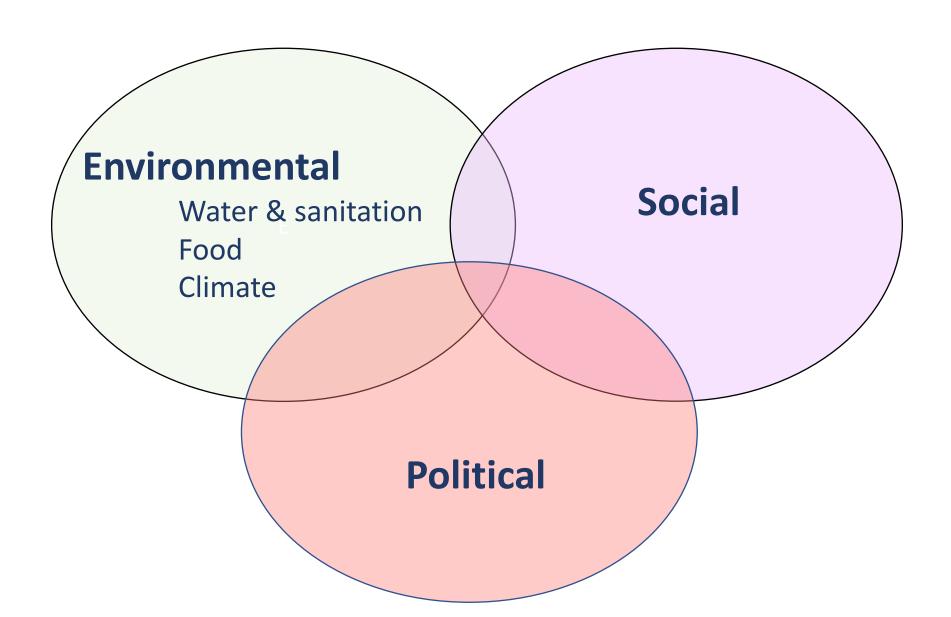
Infectious Diseases & Climate Change

Katherine Dobbs, MD, Assistant Professor Division of Pediatric Infectious Diseases


March 3, 2021

Factors that influence transmission of infectious diseases

How climate change may affect emergence and re-emergence of infectious diseases

- Emerging infectious diseases are those whose incidence in humans has increased in the past 20 years or those that threaten to increase in the near future
- Can you think of some examples?
- SARS-CoV-2, SARS-CoV, MERS-CoV, Ebola, Zika, dengue, chikungunya

How climate change may affect emergence and re-emergence of infectious diseases

- What factors influence the (re-)emergence of infectious diseases?
- Genetic adaptation of pathogen to allow for human infection (species jump), improved pathogen and/or vector survival, changes in zoonotic reservoir abundance, changes in human host exposure or susceptibility

Environmental

Climate – direct effects

Social Globalization

Political
Public health policies

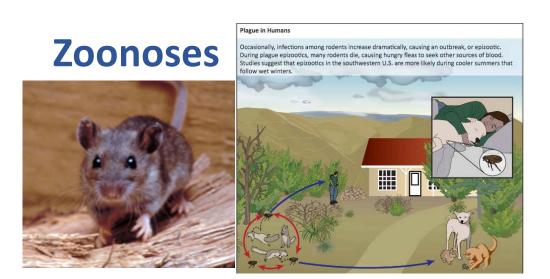
Climate – indirect effects

Climate change is expected to:

- 1. Increase risk for the introduction and transmission of infectious diseases from around the world (COVID-19)
- 2. Spread of diseases currently endemic to only parts of North America (Lyme Disease)
- 3. Re-emergence of endemic infectious diseases (more epidemics, larger range) (West Nile Virus)

Regional variations in climatic changes Warming & climate Warming in Canada variability: Climate change abroad: Introduction of exotic Epidemics/re-emergence earlier impacts of climate of endemic diseases vectors and pathogens and Increasing Warming in North America: Poleward (northward) spread of VBD and zoonoses

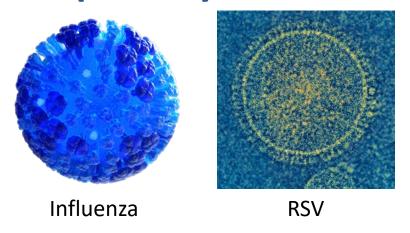
Figure 3: A summary of climate change effects on infectious disease risks for Canada^a


" Modified (23)

Ogden NH, Gachon P. Climate change and infectious diseases: What can we expect? Can Commun Dis Rep 2019;45(4):76-80.

Climate impact on infectious diseases

Vector borne



Water borne

Respiratory infections

The Endothermy Barrier

JCI The Journal of Clinical Investigation

Climate change brings the specter of new infectious diseases

Arturo Casadevall

J Clin Invest. 2020;130(2):553-555. https://doi.org/10.1172/JCI135003.

Viewpoint

The Endothermy Barrier

Clinical Infectious Diseases

MAJOR ARTICLE

Simultaneous Emergence of Multidrug-Resistant *Candida auris* on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses

Shawn R. Lockhart, 'Kizee A. Etienne,' Snigdha Vallabhaneni, 'Joveria Farooqi,' Anuradha Chowdhary, 'S Nelesh P. Govender,' Arnaldo Lopes Colombo, 'Belinda Calvo,' Christina A. Cuomo, 'Christopher A. Desjardins, 'Elizabeth L. Berkow, 'Mariana Castanheira,' Rindidzani E. Magobo, 'Kauser Jabeen, 'Rana J. Asghar, 'Jacques F. Meis, 10,11 Brendan Jackson, 'Tom Chiller,' and Anastasia P. Litvintseva'

Nycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia; "Broad Institute, MIT and Harvard, Cambridge, Massachusetts: "JMI Laboratories, North Liberty, lowa; "Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, and "Centers for Disease Control and Prevention Field Epidemiology and Laboratory Tienining Program, Islamabad, Pakistan; "Department of Medical Mycology, Vallabhabhai Patel Chest Institute, University of Delhi, India; National Institute For Communicable Diseases—Center for Opportunistic, Tropical and Hospital Infections, a Division of the National Health Laboratory Service, Johannesburg, South Africa; "Division of Infectious Diseases, Federal University of São Paulo—UNIFESP, Brazit; "Department of Infectious Diseases, School of Medicine, Universidad del Zulia, Maracailos, Venezuela; "Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, and "Department of Medical Microbiology, Radboudure, Nijmegen, The Netherlands

OPINION/HYPOTHESIS Host-Microbe Biology

On the Emergence of *Candida auris*: Climate Change, Azoles, Swamps, and Birds

Arturo Casadevall, Dimitrios P. Kontoyiannis, Vincent Robert

Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
 Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
 Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands

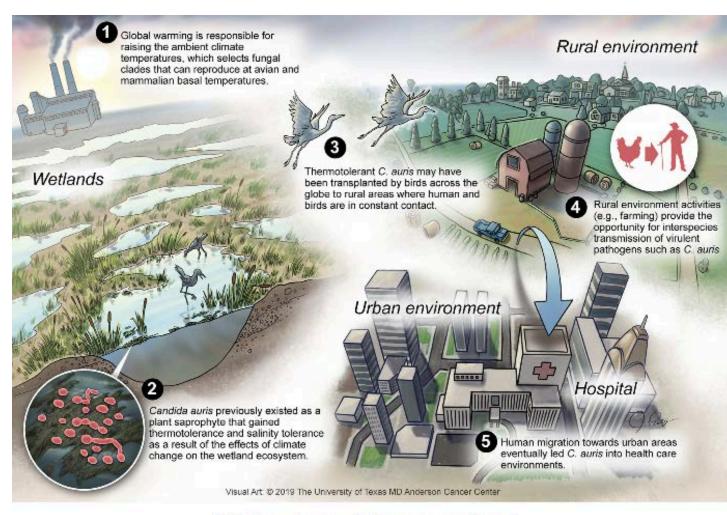


FIG 2 Proposed scheme for the emergence of C. auris.

Vector borne diseases and climate change in Ohio

1) Tickborne: Lyme Disease 2) Mosquito-borne: West Nile Virus ABOUT US

PROGRAMS

LAWS & FORMS

DATA & STATS

HEALTH DISTRICTS

A→Z

An Official Site of Ohio.gov

Zoonotic Disease Program

WELCOME

NEWS & EVENTS

ABOUT US

RESOURCES

FORMS

LAWS & RULES

Tickborne Diseases in Ohio

June 20, 2019 ODH

Diseases spread by ticks are an increasing concern in Ohio and are being reported to the Ohio Department of Health more frequently in the past decade, with Lyme disease and Rocky Mountain spotted fever (RMSF) being the most common. Other tickborne diseases such as anaplasmosis, babesiosis and ehrlichiosis are also on the rise. Though rare, diseases such as tularemia, southern tick-associated rash illness (STARI) and Powassan virus may also be carried by Ohio ticks.

The Zoonotic Disease Program tracks and responds to tickborne diseases. We collect and analyze data to detect trends in disease activity, investigate reported cases of tickborne diseases, collaborate with other state agencies and educate Ohioans about disease risks and prevention strategies.

Prevent tick bites

Ticks in Ohio

Frequently Asked Questions

There are about a dozen species of ticks that have been identified in Ohio. However, most species are associated with wild animals and are rarely encountered by people. Three species, the American dog tick, the blacklegged tick and the lone star tick, are among the most likely ticks to be encountered by people or pets and are described below. All three of these species are of significant public health importance and are responsible for pearly all tickborne.

Common ticks found in Ohio
From left to right: blacklegged tick nymph, blacklegged tick

Additional Downloads

Tick Identification Card

BeTICK Smart

Lyme Disease Rocky Mountain Spotted Fever

Anaplasmosis Ehrlichiosis

Bookmark: Be Tick Smart

Babesiosis

Local spread of vector-borne diseases: Lyme disease

Lyme disease caused by bacteria Borrelia burgdorferi

Early symptoms of Lyme disease typically begin 3-30 days after a tick bite and can include:

Erythema migrans rash ("bull's eye" rash)

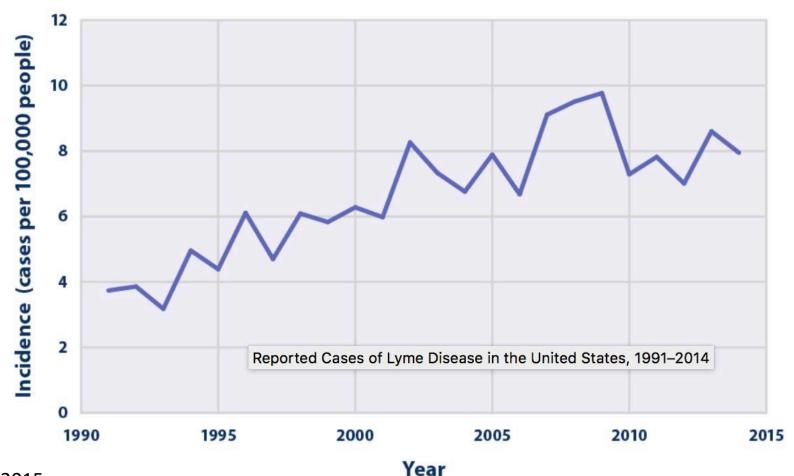
Headache

Fever

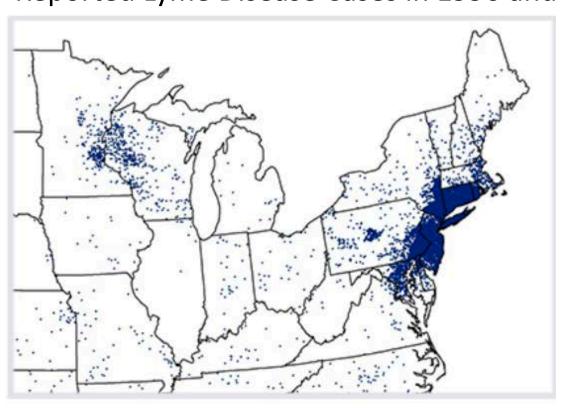
Chills

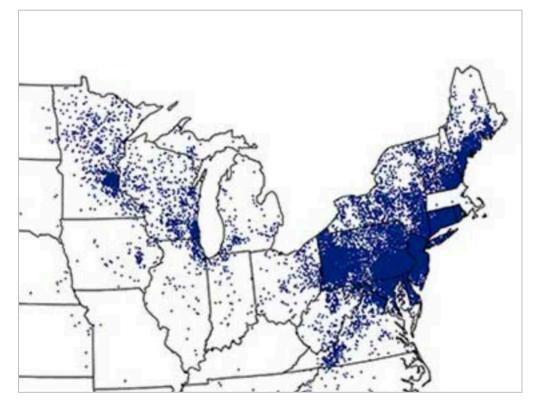
Muscle pain

Joint pain

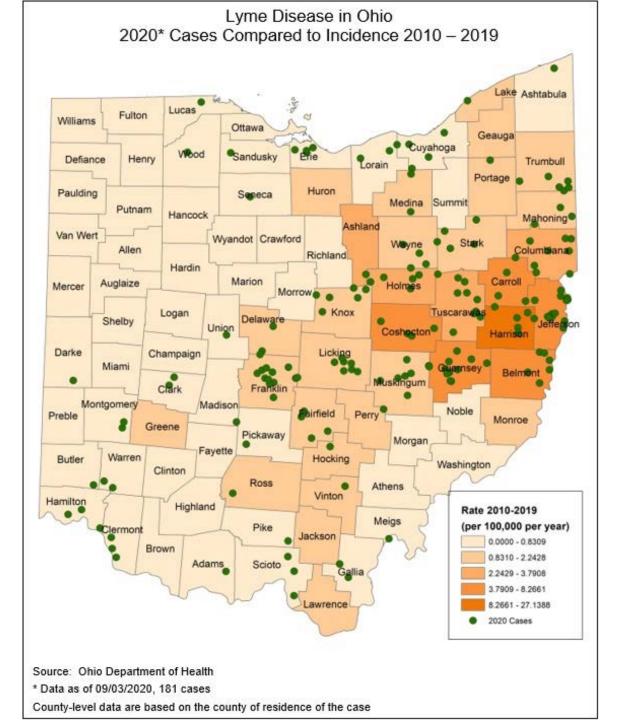

Fatigue

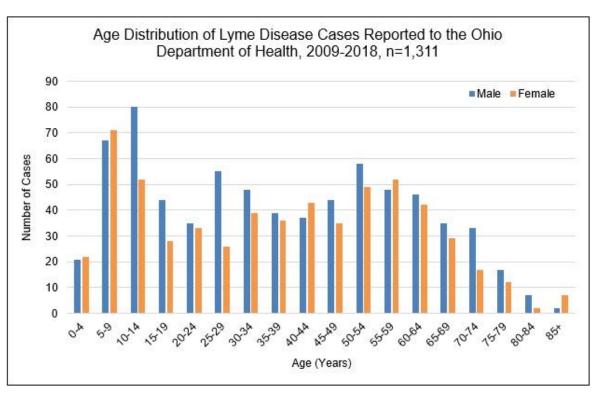
Incidence of Lyme Disease in US doubled from 1991 to 2014

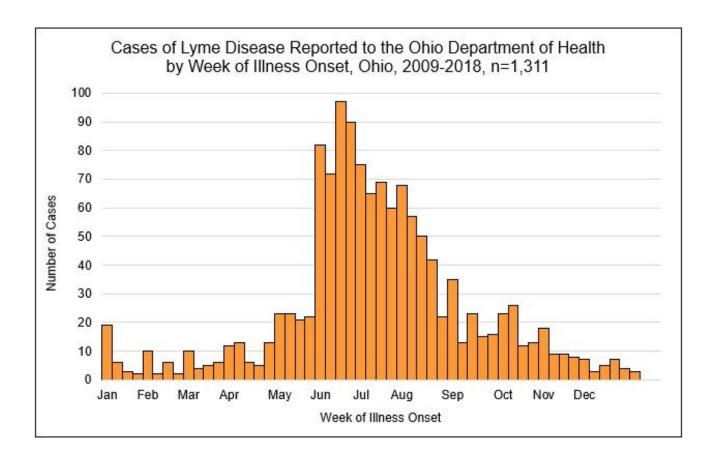

Figure 1. Reported Cases of Lyme Disease in the United States, 1991–2014



epa.gov, data source: CDC, 2015

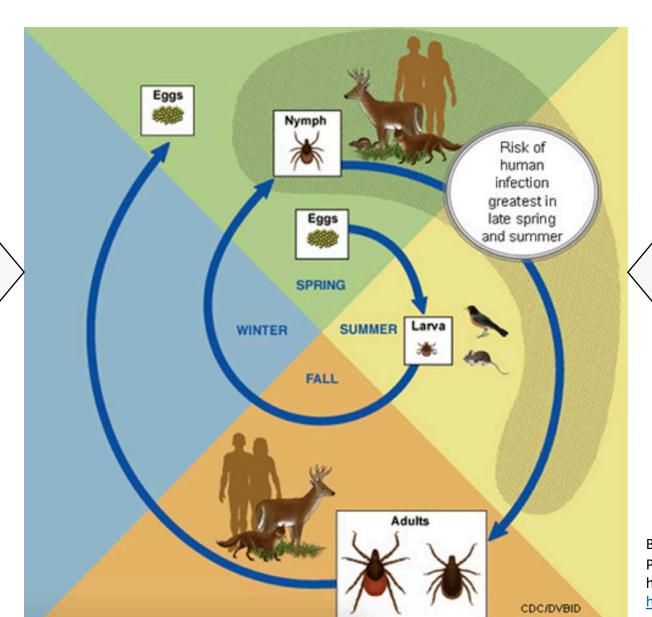

Increasing incidence of Lyme Disease in the eastern US


Reported Lyme Disease Cases in 1996 and 2018



1996 2018

Year	Human Cases	Deaths	Median Age (Years)	Age Range of Cases (Years)	Counties with Reported Lyme Cases
2009	58	0	36.5	2-77	27
2010	44	0	34.5	3-62	24
2011	53	0	34	5-84	25
2012	67	0	33	3 - 86	30
2013	93	0	43	2 - 84	34
2014	119	0	35	1 - 78	32
2015	154	0	41	1 - 85	45
2016	160	0	37	3 - 85	40
2017	270	0	40	3-86	44
2018	293	0	33	1-90	50
AVG	131	0	37	n/a	35
TOTAL	1,063	0	n/a	n/a	n/a



Mechanisms linking climate change to increased Lyme incidence

Changing ecosystems

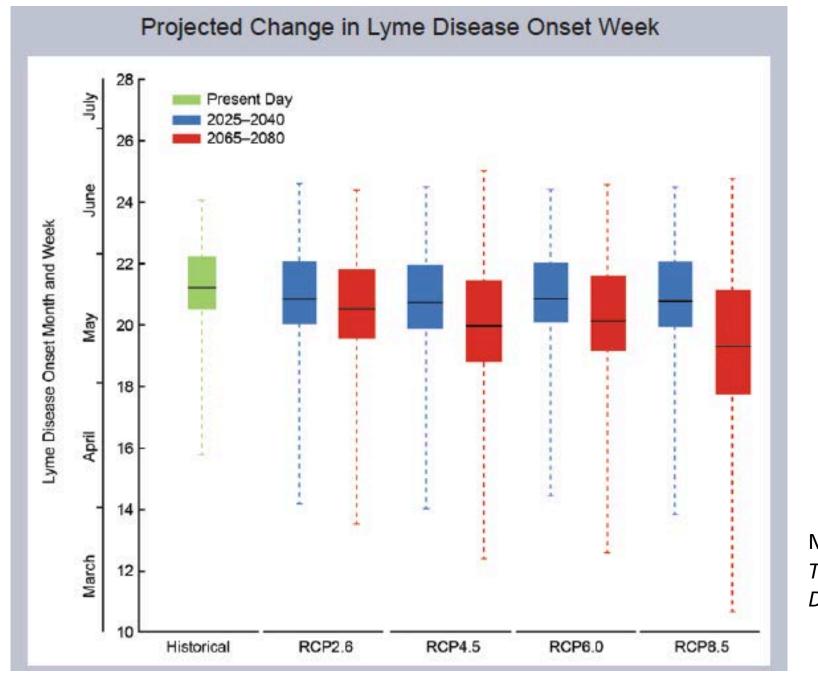
Vector control & public health practices

Social & Behavioral Context

Social determinants of health

Outdoor activity

Beard et al, 2016, US Global Change Research Program, "The impacts of climate change on human health in the US".


https://health2016.globalchange.gov.

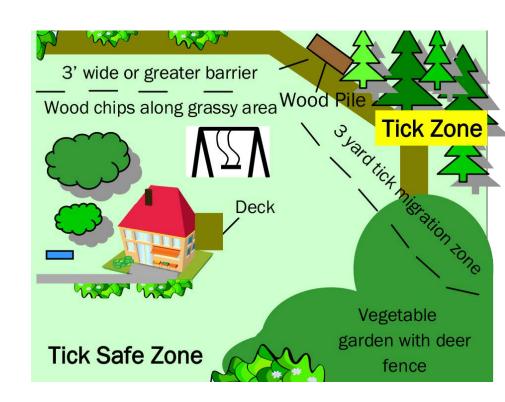
Mechanisms linking climate change to increased Lyme incidence

The potential for contracting Lyme disease depends on:

- 1. Tick vector abundance (especially density of host-seeking nymphs)
- 2. Prevalence of *B. burgdorferi* infection in ticks (especially the prevalence in nymphs)
- 3. Contact frequency between infected ticks and humans

To accurately project changes in Lyme disease risk based on climate variability, need **long-term data collection** on tick **vector abundance** and **case counts**

Monaghan et al 2015, Ticks and Tick- Borne Diseases, **6**, 615-622.


Possible solutions to Lyme disease problem

Prevent tick bites:

- Ticks live in grassy, brushy, and wooded areas
- DEET, permethrin-treated clothes and gear, long pants & sleeves
- Tick check (pets too), shower within 2hrs of coming indoors
- Landscaping techniques

Societal level:

- Improved insect repellant development
- CDC efforts: TickNET, state health depts, vectorborne disease Centers of Excellence, The Tick Project

Method #1. The Tick Control System®

The "Tick Control System", or TCS®, is a small box that attracts small mammals. When an animal enters the box, it receives a minute dose of fipronil, the active ingredient in many tick treatments used on dogs

and cats. Fipronil kills ticks on animals like mice and chipmunks, which are largely responsible for infecting ticks with the Lyme bacterium.

Method #2. Met52® fungal spray

Metarhizium anisopliae is a fungus that occurs naturally in forest soils in eastern North America. It has been shown to kill ticks. A strain of this fungus, Met52, has been developed as a commercial product. It

can be sprayed on vegetation where it kills ticks looking for hosts on which to feed.

The study will answer once and for all whether we can prevent cases of tick-borne disease by treating the areas around people's homes. If this approach prevents disease, we will be able to recommend plans that could be immediately adopted by local municipalities, governments, community groups, or neighborhoods.

Local spread of vector-borne diseases: West Nile Virus

Most common mosquito-borne disease in US

~1 in 5 people who are infected develop a fever and other symptoms.

~1 out of 150 infected people develop a serious, sometimes fatal, encephalitis/meningitis.

acvcsd.org

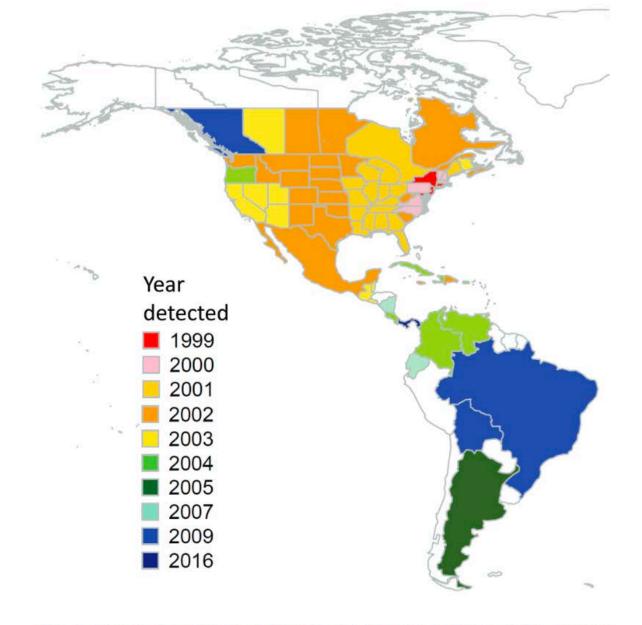
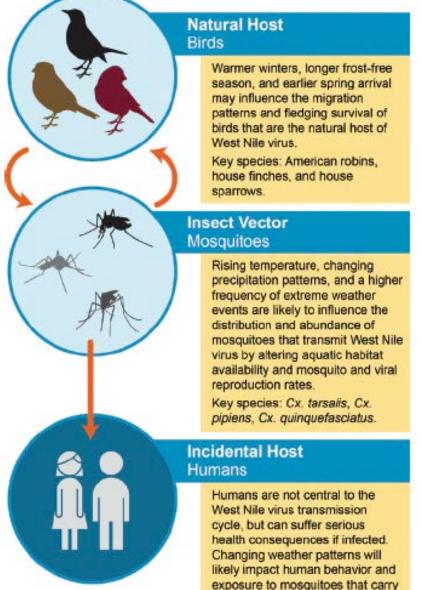



Fig. 1. Global distribution of WNV in the Americas. Color of the country, state, or province indicates the first year that WNV was detected. For several countries in the Americas no reports on the presence of WNV could be found, but the virus may be present (e.g., Peru, Chile, etc.).

Mechanisms linking climate to WNV transmission

Unlike ticks, mosquitoes have short life cycles and respond more quickly to climate drivers (days-weeks)

West Nile virus. Mosquito control or personal protection practices like wearing long-sleeves or repellent can reduce the risk of

infection.

Warmer winters, earlier spring arrival influence migration and survival

Rising temp, changes in precipitation, extreme weather influence distribution & abundance of mosquito vector

Changing weather may influence human behavior and exposure to mosquito vector

Figure 6: Climate Impacts on West Nile Virus Transmission

https://health2016.globalchange.gov

Projecting changes in WNV transmission with climate change is challenging

- Data show links between key weather variables (temp & precipitation) and WNV transmission
- Projecting impact of climate change more challenging:
 - Short history in US
 - Geographical variation in the US in relationship between precipitation & WNV transmission (e.g. northern Great Plains vs. Pacific Northwest, urban vs. rural)
 - Complex transmission cycles
- Likely that some segments of the population will be disproportionately affected by or exposed to vector-borne diseases in response to climate change

Birds such as the house finch are the natural host of West Nile virus.

Incidence of West Nile Neuroinvasive Disease by County in the United States

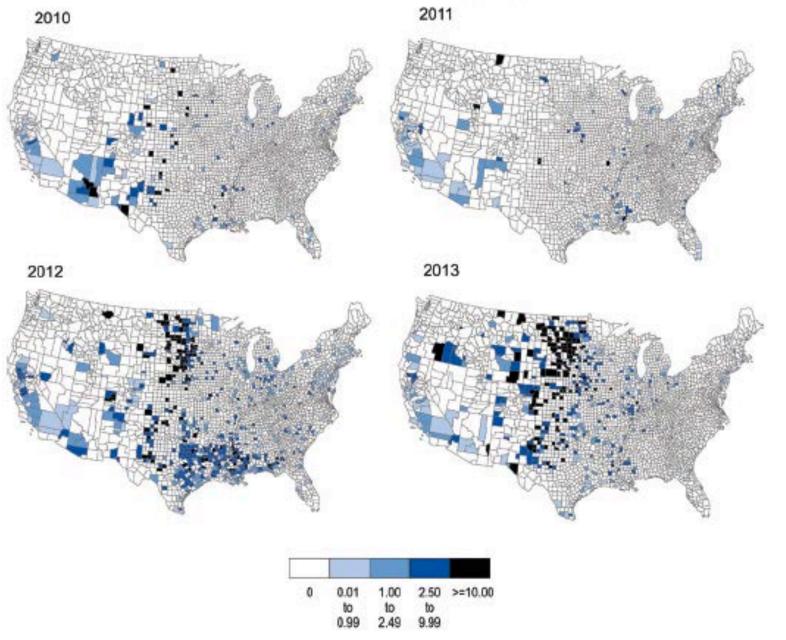
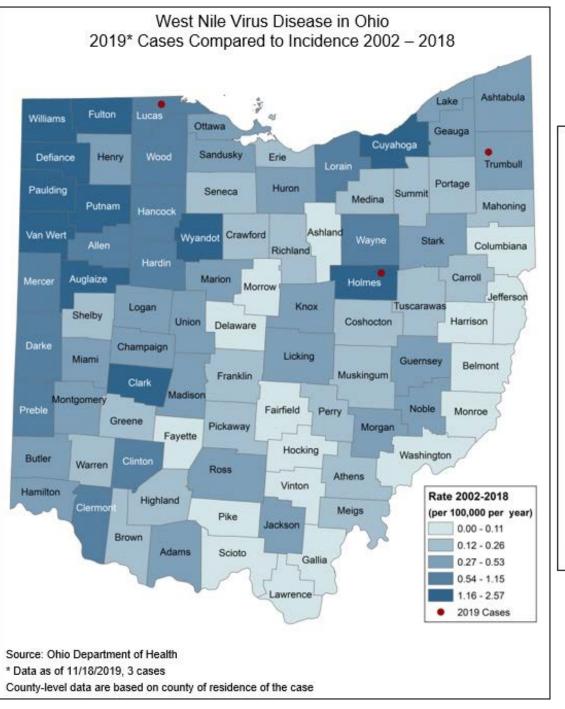
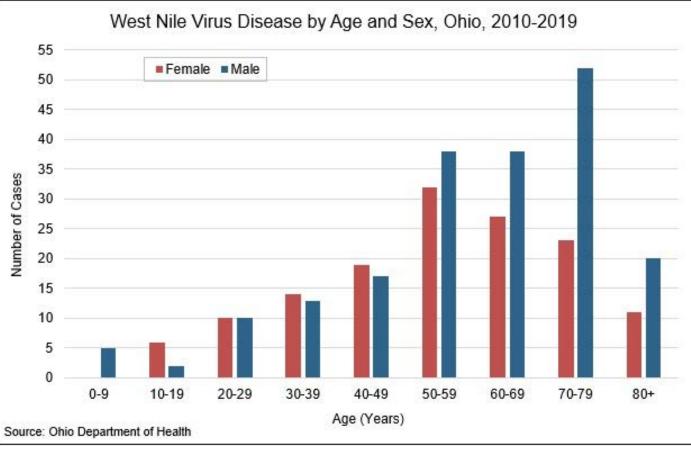
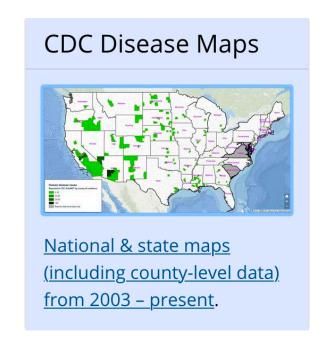




Figure 5: Maps show the incidence of West Nile neuroinvasive disease in the United States for 2010 through 2013. Shown as cases per 100,000 people. (Data source: CDC 2014)⁷³

Ohio West Nile Virus Disease Annual Human Case Statistics

Year	Human Cases	Deaths	Median Age (Years)	Age Range of Cases (Years)	Earliest Date of Symptom Onset	Asymptomatic Blood Donors
2001	0	0	n/a	n/a	n/a	n/a
2002	441	31	61	2 – 98	n/a	n/a
2003	108	8	49	11 – 90	n/a	6
2004	12	2	49.5	12 – 87	Jul 5	1
2005	61	2	53	22 – 96	Jun 14	14
2006	48	4	57.5	2 – 86	Aug 1	10
2007	23	3	52	11 – 86	Jul 12	9
2008	15	1	57	20 – 86	Jul 9	1
2009	2	0	36.5	11 – 62	Aug 27	0
2010	5	0	46	4 – 74	Jul 9	0
2011	21	1	55	14 – 83	Aug 1	6
2012	122	7	57.5	4 – 91	Jul 10	13
2013	24	4	71.5	38 – 82	Jul 29	4
2014	11	1	65	19 – 79	Jul 27	0
2015	35	2	65	14 – 91	Jul 9	10
2016	17	4	66	4 – 84	Jul 28	4
2017	34	5	59	6 – 82	Jul 24	8
2018	65	6	61	5 – 89	Jun 23	16
2019	3	1	68	59 – 68	Sep 7	0
AVERAGE	55	4	57	n/a	n/a	6
TOTAL	1,047	82	n/a	n/a	n/a	102


Possible solutions for WNV problem

Research needs:

- Models must include evidence surrounding vector-host interaction, host immunity, pathogen evolution, land use, social determinants of human health
- Coordinated, systematically collected longterm surveillance data
- Mechanistic models that include data that is specific to vector species and pathogen

Prevent mosquito bites:

- DEET, permethrin-treated clothes and gear, long pants & sleeves
- Check for water-holding containers
- Screens on windows, bed nets

3 main points to take away

- Climate change will affect transmission of infectious diseases directly (e.g. change in vector population abundance) and indirectly (e.g. changes in human migration due to economic effects)
- 2. Ticks capable of carrying the bacteria that cause Lyme disease and other pathogens will show earlier seasonal activity and a generally northward expansion in response to increasing temperatures associated with climate change
- 3. Rising temperatures, changing precipitation patterns, and a higher frequency of some extreme weather events associated with climate change will influence the distribution, abundance, and prevalence of infection in the mosquitoes that transmit West Nile virus by altering habitat availability and mosquito and viral reproduction rates

